Mammals (class Mammalia) are warm-blooded, vertebrate animals characterized by the presence of sweat glands, including milk producing sweat glands, and by the presence of: hair, three middle ear bones used in hearing, and a neocortex region in the brain. Most mammals also possess specialized teeth and utilize a placenta in the ontogeny. The mammalian brain regulates endothermic and circulatory systems, including a four-chambered heart. Mammals encompass approximately 5,400 species (including humans), distributed in about 1,200 genera, 153 families, and 29 orders,[1] though this varies by classification scheme.
Most mammals belong to the placental group. The four largest orders within the placental mammals are Rodentia (mice, rats, and other small, gnawing mammals), Chiroptera (bats), Carnivora (dogs, cats, bears, and other mammals that primarily eat meat), and Cetartiodactyla (including numerous herbivore species, such as deer, sheep, goats, and buffalos, plus whales).
Phylogenetically, Mammalia is defined as all descendants of the most recent common ancestor of monotremes (e.g., echidnas and platypuses) and therian mammals (marsupials and placentals). This means that some extinct groups of "mammals" are not members of the crowngroup Mammalia, even though most of them have all the characteristics that traditionally would have classified them as mammals. These "mammals" are now usually placed in the unranked clade Mammaliaformes.
The first true mammals appeared in the Jurassic period. Modern mammalian orders appeared in the Palaeocene and Eocene epochs of the Palaeogene period.
Anatomy and morphology
Skeletal system
The majority of mammals have seven cervical vertebrae (bones in the neck); this includes bats, giraffes, whales, and humans. The few exceptions include the manatee and the two-toed sloth, which have only six cervical vertebrae, and the three-toed sloth with nine cervical vertebrae.
Respiratory system
The lungs of mammals have a spongy texture and are honeycombed with epithelium having a much larger surface area in total than the outer surface area of the lung itself. The lungs of humans are typical of this type of lung.
Breathing is largely driven by the muscular diaphragm at the bottom of the thorax. Contraction of the diaphragm pulls the bottom of the cavity in which the lung is enclosed downward. Air enters through the oral and nasal cavities; it flows through the larynx and into the trachea, which branches out into bronchi. Relaxation of the diaphragm has the opposite effect, passively recoiling during normal breathing. During exercise, the diaphragm contracts, forcing the air out more quickly and forcefully. The rib cage itself also is able to expand and contract to some degree, through the action of other respiratory and accessory respiratory muscles. As a result, air is sucked into or expelled out of the lungs, always moving down its pressure gradient. This type of lung is known as a bellows lung as it resembles a blacksmith's bellows.
Circulatory system
The mammalian heart has four chambers: the right atrium, right ventricle, left atrium, and left ventricle. Atria are for receiving blood; ventricles are for pumping blood to the lungs and body. The ventricles are larger than the atria and their walls are thick, because muscular walls are needed to forcefully pump the blood from the heart to the body and lungs. Deoxygenated blood from the body enters the right atrium, which pumps it to the right ventricle. The right ventricle pumps blood to the lungs, where carbon dioxide diffuses out, and oxygen diffuses in. From the lungs, oxygenated blood enters the left atrium, where it is pumped to the left ventricle (the largest and strongest of the 4 chambers), which pumps it out to the rest of the body, including the heart's own blood supply.
Nervous system
All mammalian brains possess a neocortex, a brain region that is unique to mammals.
Integumentary system
Mammals have integumentary systems made up of three layers: the outermost epidermis, the dermis, and the hypodermis. This characteristic is not unique to mammals, since it is found in all vertebrates.
The epidermis is typically ten to thirty cells thick; its main function being to provide a waterproof layer. Its outermost cells are constantly lost; its bottommost cells are constantly dividing and pushing upward. The middle layer, the dermis, is fifteen to forty times thicker than the epidermis. The dermis is made up of many components such as bony structures and blood vessels. The hypodermis is made up of adipose tissue. Its job is to store lipids, and to provide cushioning and insulation. The thickness of this layer varies widely from species to species.
Although mammals and other animals have cilia that superficially may resemble it, no other animals except mammals have hair. It is a definitive characteristic of the order. Some mammals have very little, albeit in obscure parts of their bodies, but nonetheless, careful examination reveals the characteristic. None are known to have hair that naturally is blue or green in color although some cetaceans, along with the mandrills appear to have shades of blue skin. Many mammals are indicated as having blue hair or fur, but in all known cases, it has been found to be a shade of gray. The two-toed sloth and the polar bear may seem to have green fur, but this color is caused by algae growths.
Reproductive system
Most mammals give birth to live young (vivipary), but a few, such as the monotremes lay eggs. Live birth also occurs in some non-mammalian species, such as guppies, snakes, and hammerhead sharks; thus it is not a distinguishing characteristic of mammals.
Mammals have sweat glands, a defining feature present only in mammals. Some of these glands produce milk (in what are called mammary glands), a liquid used by newborns as their primary source of nutrition. The monotremes branched from other mammals early on, and do not have the nipples seen in most mammals, but they do have mammary glands.
wikipedia
No comments:
Post a Comment